5 research outputs found

    Deep Connectomics Networks: Neural Network Architectures Inspired by Neuronal Networks

    Full text link
    The interplay between inter-neuronal network topology and cognition has been studied deeply by connectomics researchers and network scientists, which is crucial towards understanding the remarkable efficacy of biological neural networks. Curiously, the deep learning revolution that revived neural networks has not paid much attention to topological aspects. The architectures of deep neural networks (DNNs) do not resemble their biological counterparts in the topological sense. We bridge this gap by presenting initial results of Deep Connectomics Networks (DCNs) as DNNs with topologies inspired by real-world neuronal networks. We show high classification accuracy obtained by DCNs whose architecture was inspired by the biological neuronal networks of C. Elegans and the mouse visual cortex.Comment: Presented at the Real Neurons & Hidden Units Workshop, 33rd Conference on Neural Information ProcessingSystems (NeurIPS 2019), Vancouver, Canad

    Fonts-2-Handwriting: A Seed-Augment-Train framework for universal digit classification

    Full text link
    In this paper, we propose a Seed-Augment-Train/Transfer (SAT) framework that contains a synthetic seed image dataset generation procedure for languages with different numeral systems using freely available open font file datasets. This seed dataset of images is then augmented to create a purely synthetic training dataset, which is in turn used to train a deep neural network and test on held-out real world handwritten digits dataset spanning five Indic scripts, Kannada, Tamil, Gujarati, Malayalam, and Devanagari. We showcase the efficacy of this approach both qualitatively, by training a Boundary-seeking GAN (BGAN) that generates realistic digit images in the five languages, and also quantitatively by testing a CNN trained on the synthetic data on the real-world datasets. This establishes not only an interesting nexus between the font-datasets-world and transfer learning but also provides a recipe for universal-digit classification in any script.Comment: Published as a workshop paper at ICLR 2019 (DeepGenStruct-2019

    BERT Learns (and Teaches) Chemistry

    Full text link
    Modern computational organic chemistry is becoming increasingly data-driven. There remain a large number of important unsolved problems in this area such as product prediction given reactants, drug discovery, and metric-optimized molecule synthesis, but efforts to solve these problems using machine learning have also increased in recent years. In this work, we propose the use of attention to study functional groups and other property-impacting molecular substructures from a data-driven perspective, using a transformer-based model (BERT) on datasets of string representations of molecules and analyzing the behavior of its attention heads. We then apply the representations of functional groups and atoms learned by the model to tackle problems of toxicity, solubility, drug-likeness, and synthesis accessibility on smaller datasets using the learned representations as features for graph convolution and attention models on the graph structure of molecules, as well as fine-tuning of BERT. Finally, we propose the use of attention visualization as a helpful tool for chemistry practitioners and students to quickly identify important substructures in various chemical properties.Comment: 10 pages, 5 figure

    Covering up bias in CelebA-like datasets with Markov blankets: A post-hoc cure for attribute prior avoidance

    Full text link
    Attribute prior avoidance entails subconscious or willful non-modeling of (meta)attributes that datasets are oft born with, such as the 40 semantic facial attributes associated with the CelebA and CelebA-HQ datasets. The consequences of this infirmity, we discover, are especially stark in state-of-the-art deep generative models learned on these datasets that just model the pixel-space measurements, resulting in an inter-attribute bias-laden latent space. This viscerally manifests itself when we perform face manipulation experiments based on latent vector interpolations. In this paper, we address this and propose a post-hoc solution that utilizes an Ising attribute prior learned in the attribute space and showcase its efficacy via qualitative experiments.Comment: Accepted for presentation at the first workshop on Invertible Neural Networks and Normalizing Flows (ICML 2019), Long Beach, CA, US

    Understanding Adversarial Robustness Through Loss Landscape Geometries

    Full text link
    The pursuit of explaining and improving generalization in deep learning has elicited efforts both in regularization techniques as well as visualization techniques of the loss surface geometry. The latter is related to the intuition prevalent in the community that flatter local optima leads to lower generalization error. In this paper, we harness the state-of-the-art "filter normalization" technique of loss-surface visualization to qualitatively understand the consequences of using adversarial training data augmentation as the explicit regularization technique of choice. Much to our surprise, we discover that this oft deployed adversarial augmentation technique does not actually result in "flatter" loss-landscapes, which requires rethinking adversarial training generalization, and the relationship between generalization and loss landscapes geometries.Comment: Presented at the ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning, and CVPR 2019 Workshop on The Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security (CV-COPS
    corecore